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Abstract This paper presents a homotopy interior point method for solving a
semi-infinite programming (SIP) problem. For algorithmic purpose, based on bilevel
strategy, first we illustrate appropriate necessary conditions for a solution in the frame-
work of standard nonlinear programming (NLP), which can be solved by homotopy
method. Under suitable assumptions, we can prove that the method determines a
smooth interior path �w(0) ⊂ (X0 × Y0) × �++ × �l++ × (0, 1] from a given interior
point w(0) ∈ (X0×Y0)×�++×�l++ to a point w∗, at which the necessary conditions are
satisfied. Numerical tracing this path gives a globally convergent algorithm for the SIP.
Lastly, several preliminary computational results illustrating the method are given.

Keywords Semi-infinite programming · First-order necessary optimality condition ·
Homotopy method · Global convergence

1 Introduction

Semi-infinite programming is an exciting part of mathematical programming, which is
characterized by a finite number of variables and an infinite number of constraints. It
has a wide range of applications, e.g., in engineering design, in approximation theory,
in optimal control, in probability distributions. Furthermore, in finite optimization
with uncertainty about parameters y from a fixed set Y , the worst-case formulation
of inequality constraints gives rise to a standard semi-infinite problem. If the set of
uncertain parameters is state-dependent, i.e. Y = Y(x), then the worst-case formula-
tion takes the form of generalized semi-infinite programming (GSIP). Due to its wide
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applications, the study on the theory and numerical solution has been a very active
research area in the last two decades. For more details of these and other applications,
we refer to the conference proceedings [11] and the references cited therein, and also
to the comprehensive survey [6] which covers theory, methods and applications of SIP.

The growing interest in SIPs over recent years has resulted in various contributions
on the structure of the feasible set [12] and on first and second-order optimality con-
ditions [8,12] (see the monograph [14] for an overview). To date, variously numerical
approaches have been proposed to tackle problems of this kind, in which how to
handle the infinite set X of constraints is one of the main features. For doing this, a
commonly used way is to replace X by a finite set, and then to solve a standard finite
program. In this context several approaches are well known. First, so-called Reduction
Ansatz, developed by Wetterling, is to describe the feasible set of the SIP locally by
finitely many inequality constraints. Hereby, the SIP program can be locally reduced
to a finite one, at least conceptually (see [15]). Discretization method, the idea is to
minimize its objective function subject to only a finite subset Xk of X with Xk ⊂ Xk+1
(usually Xk, k = 0, . . . , N are grids of points), and possibly to repeat the procedure
for an enlarged set Xk+1. The solution of SIP is approximated by the solution on
the final subset XN (see [6,11] for more detailed explanation). Exchange method,
which is often more efficient than a pure discretization method, can be regarded as a
compromise between discretization method and continuous reduction approach, etc.
(see also [11,13]). So far, many results exhibit rapidly (locally) convergent algorithms
such as Newton-like method. Then how to find good initial points is highly impor-
tant. In order to derive such a point, usually one has to solve a discretization of the
original problems, and this has led to the two (or even three) phase methods. Thus it is
necessary to construct globally convergent algorithms. To our knowledge, the global
algorithms for the SIP have those proposed by Coope and Watson [3], Watson [16]
and Conn and Gould [4]. In this paper, based on local reduction and bilevel strategies,
we will propose a homotopy method for the SIP, which has a global convergence.

Homotopy method, known as a class of important globally convergent method,
has become a powerful tool in finding solutions of nonlinear systems (e.g. [2]). It has
been given to constructively prove existence of solution and served as implementable
algorithms. For some optimization problems, this method avoids the assumptions that
the logarithmic barrier functions are strictly convex, in comparison with some inte-
rior-point methods. By now, this method has been further studied [5] (see also [17]
for a survey discussion). However, the application of homotopy method to SIP is rel-
atively small (see [7]). In this work, we also discuss about the feasibility of homotopy
algorithm for the SIP.

To make the homotopy method available for our SIP, we reformulate the SIP into
the two-level Karush–Kuhn–Tucker (KKT) system based on local reduction tech-
nique. Then, we embed the latter into a homotopy equation, which links the problem
considered to a simpler one. By the parametrized Sard theorem, for almost every
point of (X0 × Y0) × �++ × �l++, we obtain a path starting from that point and make
the path lie in (X0 × Y0) × �++ × �l++ × (0, 1]. As a key to the homotopy method,
we can prove that the path leads to a KKT point to the problem considered. A sim-
ple predictor–corrector algorithm is given to trace numerically such a path. Finally,
several numerical results are given to illustrate the method.

The organization of the paper is as follows. In Sect. 2, we reformulate SIP into a
two-level KKT system under suitable assumptions. In Sect. 3, we give the homotopy
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and prove in details the existence of the smooth path from a given point to a KKT
point to the considered problem under some “normal cone” condition. Finally, in
Sect. 4, we give several preliminary numerical results.

2 Problem formulation and optimality conditions

Consider the semi-infinite programming problem in the following form:

min f (x) s. t. g(x, y) ≤ 0, ∀ y ∈ Y (2.1)

with

Y = {y ∈ �m : h�(y) ≤ 0, � ∈ L},
where all defining functions f , g and h�, � ∈ L = {1, . . . , l}, are assumed to be real-
valued and twice continuously differentiable on their respective domains. The index
set Y ⊆ �m is a nonempty compact subset of �m, which may contain infinitely many
elements. That is why the SIPs are called SIP problems, moreover, if the cardinality
of Y is finite, then the SIP becomes a standard nonlinear program in the literature.
For the simplicity of notation, by X we denote the feasible set of the SIP, i.e.

X = {x ∈ �n : g(x, y) ≤ 0, ∀ y ∈ Y}
or equivalently,

X =
⋂

y∈Y

{
x ∈ �n : g(x, y) ≤ 0

}
.

Since g(·, y) is continuous w.r.t. x, X is the possibly infinite intersection of closed sets,
and hence a closed set itself. In addition, let us denote by X0, Y0, ∂X = X \ X0 and
∂Y = Y \ Y0 the topological interior, boundary of X and Y , respectively. For each
y ∈ Y , we denote the set of active indices at y by

Ih(y) = {� ∈ L : h�(y) = 0}
and if x̄ ∈ X, we denote by Xact(x̄) the set of corresponding active points:

Xact(x̄) = {y ∈ Y : g(x̄, y) = 0}.
These active points are in fact (global) maxima for g(x̄, ·) on Y , which play an impor-
tant role for the local structure of X at x̄ and hence, also for local optimality conditions.
Moreover, there is the striking difference from |Y| < ∞. unless Y is a finite set, the set
Xact(x) need not be a subset of Xact(x̄) for X 	 x arbitrarily close to x̄. In particular,
the active set Xact(x) changes from point to point along the boundary of the feasible
set X.

In what follows, we begin with a description of necessary conditions for the SIP
which we will use in the sequel. For this, we adopt a commonly used way to transform
SIP into a problem of bilevel type, and then to reduce the latter to a standard NLP.
Under suitable assumptions, we wish to derive first-order optimality conditions for
the SIP (see [12] for related topic). First let us consider the following n-parametric
optimization problem

min
y

− g(x, y) s. t. y ∈ Y , (2.2)



634 J Glob Optim (2007) 37:631–646

which is, also called the lower level problem, well defined in the sense that problem
(2.2) always has solutions. Clearly, it is x ∈ X if and only if a solution y of (2.2) satisfies
g(x, y) ≤ 0. Thus, the condition x ∈ X is equivalent with x ∈ Projx(X̃), where

X̃ = {(x, y) ∈ �n × �m : g(x, y) ≤ 0 and y is a solution of (2.2)},
here, Projx(·) denotes the orthogonal projection of X̃ onto the space �n. Summarizing,
the bilevel (BL) formulation of SIP is given by

min f (x)

s. t. g(x, y) ≤ 0, and y is a solution of
min

y
− g(x, y) s. t. y ∈ Y .

(2.3)

In this form, the SIP can be considered as a special instance of a BL-problem. In prin-
ciple, by using BL-case’s techniques, optimality conditions for the SIP can be directly
deduced from the corresponding results in BL programming (BLP). But, sometimes
optimality conditions obtained in this way are so complex that it is very difficult to
apply a homotopy method to this system. Hence, we try to illustrate first-order nec-
essary conditions for the original problem (2.1) by applying the so-called reduction
approach in [6]. For this, it is necessary to make the following assumptions hold, which
will be used throughout this paper.

(A1) For each fixed x ∈ �n, the function g(x, ·) is uniformly strictly concave w.r.t. the
variable y. All functions h�(y), � ∈ L, are convex w.r.t. the variable y.

(A2) The sets X, Y are bounded respectively, and X0 
= ∅, Y0 
= ∅ ( Slater’s condi-
tion).

(A3) For any x ∈ X with Xact(x) 
= ∅, the vectors ∇xg(x, y), ∀y ∈ Xact(x), are linearly
independent (LICQ in SIP).

(A4) For any y ∈ Y , { ∇h�(y) : � ∈ Ih(y)} is of full column rank (LICQ in NLP).

It is well-known that under assumption (A1), for any fixed x ∈ �n, there exists a
unique (global) minimizer for problem (2.2), defined as y(x). Furthermore, under
assumption (A2), y := y(x) is a solution to (2.2) if and only if there exists λ ∈ �l such
that (y, λ) satisfies the following first-order necessary conditions for (2.2), given by

∇yL(x, y, λ) = 0,

λTh(y) = 0,

λ ≥ 0, h(y) ≤ 0,

(2.4)

where h = (h1, . . . , hl)
T for brevity and for every parameter x ∈ �n, the Lagrange

function of (2.2) at y ∈ �m is denoted by

L(x, y, λ) = −g(x, y) +
l∑

�=1

λ�h�(y).

In this case the semi-infinite constraint can be replaced locally by the finite (but in
general nonlinear) constraint G(x) = g(x, y(x)). Thus, the SIP (2.1) or (2.3) is certainly
locally equivalent to the so-called reduced problem:

min f (x)

s. t. G(x) := g(x, y(x)) ≤ 0.
(2.5)
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Note that (2.5) is a finite optimization problem but not necessary to be smooth. If
some CQs hold, standard optimality conditions can be applied to (2.5), and then lead
to that for the SIP problem. Moreover, for algorithmic purpose, the smoothness of
G(·) must be required. To this end, we have to consider the analytic properties of
G(x). Hence, it is necessary to list some results from sensitivity analysis in NLP [8].

Lemma 2.1 For any fixed x̄ ∈ �n, let ȳ be a solution of (2.2), and the following condi-
tions (1)−(3) hold at ȳ for (2.2):

(1) there exists Lagrange multiplier vector λ̄ ∈ �l such that, (x̄, ȳ, λ̄) satisfies (2.4).
(2) Assumption (A4) holds.
(3) the strong second-order sufficient optimality condition:

ηT∇2
yL(x̄, ȳ, λ̄)η > 0 for all �m 	 η 
= 0 s.t.∇h�(ȳ)η=0, if λ� > 0, � ∈ L. (SSOSC)

Then there exist a neighborhood �(x̄) of x̄ and unique Lipschitz continuous functions
y(·), λ(·) on �(x̄), such that y(x̄) = ȳ, λ(x̄) = λ̄, and for x ∈ �(x̄):

(a) y(x) with Lagrange multiplier vector λ(x) satisfy the same conditions (1)−(3) and
y(x) is an isolated strict local minimum of (2.2).

(b) the following relation holds: J̄+ ⊂ J(x) ⊂ J̄, where

J(x) = {� ∈ L : h�(y(x)) = 0}, J̄ = J(x̄), J̄+ = {j ∈ J̄ : λ̄� > 0}.
(c) the local optimal value function G(x) := g(x, y(x)) is once continuously differen-

tiable, i.e., of class C1, and twice directionally differentiable.
(d) if at ȳ the strict complementarity condition is satisfied, i.e., λ̄� > 0 for all � ∈ J̄, then

the function G(x) are C2-function in �(x̄) with derivative

∇G(x) = ∇xg(x, y(x)) + ∇yg(x, y(x))ẏ(x)

= ∇xg(x, y(x))

and J̄ = J(x) = J̄+.

Definition 2.1 We say that, the linear independence constraint qualification (LICQ)
in NLP holds at x̄ ∈ X, if for the constraint in (2.5), we have

∇G(x̄) 
= 0,

or equivalently,

∇xg(x̄, ȳ) 
= 0 for any ȳ ∈ Xact(x̄).

The above arguments show that, at least locally near x̄, if ∇G(x̄) 
= 0, the standard
optimality conditions of finite optimization can be applied to (2.5), and then lead to
obtain optimality conditions for the semi-infinite problem: There exists some multi-
plier vector u ∈ �+ such that a pair (x, u) satisfies

∇f (x) + ∇G(x)u = 0,
uTG(x) = 0,
u ≥ 0, G(x) ≤ 0,

(2.6)

where G(x) = g(x, y(x)), here, y(x) satisfies implicitly the following KKT-conditions
for (2.2).

−∇yg(x, y) + ∇h(y)v = 0,
vTh(y) = 0,
v ≥ 0, h(y) ≤ 0.

(2.7)
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We call x ∈ �n with y ∈ �m, u ∈ � and v ∈ �l, satisfying (2.6) associated with (2.7), a
stationary point of the SIP problem. In fact, for more general problems of this type,
one can obtain the so-called substationary point (see [15] for more details).

Note that (2.6), together with (2.7), is a system of n + m + 1 + l nonlinear equa-
tions of n + m + 1 + l unknowns. If given a sufficiently accurate starting point, these
equations can then be solved very fast by Newton’s method. However, a good initial
point is rarely available. So, the special techniques to generate such a point have to
be applied. In this paper we apply a successful homotopy method for NLP to the SIP
problem.

3 Homotopy algorithm and its global convergence

In this section, we propose a globally convergent homotopy method for solving (2.1)
on the basis of (2.6) and (2.7). To ensure that the global convergent theory for homot-
opy algorithm holds in terms of conditions on the objective function and constraints,
we further assume that the following additional condition (A5) is true.
(A5) For any x ∈ ∂X with Xact(x) 
= ∅, the following condition holds

{ x + ∇xg(x, y(x))u : u > 0 }
⋂

X = {x},
where y(x) ∈ Xact(x).

To solve (2.6), together with (2.7), we construct the following homotopy function
H : �n+m+1+l × (0, 1] → �n+m+1+l, defined by

H(w, w(0), µ) ≡





(1 − µ)(∇f (x) + ∇xg(x, y)u) + µ(x − x(0))

(1 − µ)(−∇yg(x, y) + ∇h(y)v) + µ(y − y(0))

ug(x, y) − µu(0)g(x(0), y(0))

Vh(y) − µV(0)h(y(0))



 = 0, (3.1)

where

w = (x, y, u, v), w(0) = (x(0), y(0), u(0), v(0)) ∈ �0 × �++ × �l++

and

V = diag(v), V(0) = diag(v(0)),

�0 = { (x, y) ∈ X × Y : g(x, y) < 0, h(y) < 0 }, � = cl{�0}, ∂� = �\�0.

In addition, we rewrite H(w, w(0), µ) as Hw(0) (w, µ) for brevity.
Eq. (3.1) is called a combined homotopy and the corresponding algorithm as the

combined homotopy interior point method because the first and second components
of (3.1) are the linear homotopy, while the third and fourth components of it, which
make the method an interior point method, are the Newton homotopy.

Eq. (3.1) contains two limiting problems. On the one hand when µ = 1, we have

x − x(0) = 0,
y − y(0) = 0,

ug(x, y) − u(0)g(x(0), y(0)) = 0,
Vh(y) − V(0)h(y(0)) = 0,

(3.2)
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which has an unique solution w = w(0). On the other hand when µ = 0, we have

Hw(0) (w, 0) =





∇f (x) + ∇xg(x, y)u
−∇yg(x, y) + ∇h(y)v

ug(x, y)

Vh(y)



 = 0, (3.3)

which is the problem we want to solve. For a given w(0) ∈ �0 × �++ × �l++, the zero
point set of Hw(0) (·, ·) in �0 × �++ × �l++ × (0, 1] is defined as:

H−1
w(0) (0) =

{
(w, µ) ∈ �0 × �++ × �l++ × (0, 1] : Hw(0) (w, µ) = 0

}
.

The method sketched so far is based on the assumption that there exists a smooth
solution path without bifurcation points, which starts from (w(0), 1) and approaches to
the hyperplane at µ = 0. Before describing homotopy continuation methods in more
algorithmic details we look for criteria for an existence of such a solution path.

Parameterized Sard theorem [2] Let Q, N and P be smooth manifolds of dimensions
q, m and p, respectively. Let � : Q × N → P be a Cr map, where r > max{0, m − p}.
If 0 ∈ P is a regular value of �, then for almost all a ∈ Q, 0 is a regular value of
�a ≡ �(a, ·).
Lemma 3.1 Suppose that Assumption (A2) holds, and let Hw(0) (w, µ) be defined in
(3.1), then for almost all w(0) ∈ �0 × �++ × �l++, 0 is a regular value of Hw(0) (·, ·),
and H−1

w(0) (0) consists of some smooth curves, among them, a smooth curve, say �w(0) ,

is starting from (w(0), 1).

Proof By DH(w, w(0), µ) we denote the Jacobi matrix of H(w, w(0), µ) w.r.t. all vari-
ables w, w(0), µ, given by

DH(w, w(0), µ) =
(

∂H(w, w(0), µ)

∂w
,
∂H(w, w(0), µ)

∂w(0)
,
∂H(w, w(0), µ)

∂µ

)
.

For any w(0) ∈ �0 × �++ × �l++ and µ ∈ (0, 1], we obtain

∂H(w, w(0), µ)

∂w(0)
=





−µI 0 0 0
0 −µI 0 0

−µu(0)g′
x(0) (x

(0), y(0)) −µu(0)g′
y(0) (x

(0), y(0)) −µg(x(0), y(0)) 0

0 −µV(0)∇h(y(0)) 0 −µdiag(h(y(0)))



 .

(3.4)

By a straightforward calculation, the determinant of (3.4) is
∣∣∣∣∣
∂H(w, w(0), µ)

∂w(0)

∣∣∣∣∣ = (−µ)n+m+1+lg(x(0), y(0))

l∏

�=1

h�(y(0)).

From (x(0), y(0)) ∈ �0, we have g(x(0), y(0)) < 0, h�(y(0)) < 0, and hence

|∂H(w, w(0), µ)/∂w(0)| 
= 0,
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which implies that DH(w, w(0), µ) is of full row rank. That is, 0 is a regular value of
H(w, w(0), µ). By the parameterized Sard theorem, for almost all w(0) ∈ �0 × �++ ×
�l++, 0 is a regular value of Hw(0) : �0 × �++ × �l++ × (0, 1] → �n+m+1+l. By the
implicit function theorem, H−1

w(0) (0) consists of some smooth curves. Again, because
Hw(0) (w(0), 1) = 0, there must be a smooth curve �w(0) starting from (w(0), 1). ��
Lemma 3.2 Suppose that assumptions (A1)− (A5) hold, for a given w(0) ∈ �0 ×
�++ × �l++, if 0 is a regular value of Hw(0) (·, ·), then �w(0) is a bounded curve in
� × �+ × �l+ × [0, 1].

Proof If not then, there exists a sequence of points {(w(k), µk)} ⊂ �w0 such that
||(w(k), µk)|| → ∞. Because X, Y and [0, 1] are bounded, there exists a subsequence
of points, denoted also by {(w(k), µk)}, such that x(k) → x∗ ∈ X, y(k) → y∗ ∈ Y ,
µk → µ∗ ∈ [0, 1] and ||(u(k), v(k))|| → ∞, as k → ∞. Thus, we can set

I(y∗) = {j ∈ {1, . . . , l} : v(k)
j → +∞}.

So, at least one of two cases (a) and (b):

(a) I(y∗) 
= ∅, (b) I(y∗) = ∅
hold. Next, we prove that each of two cases a) and b) can not occur by considering
the following three cases: µ∗ = 1, µ∗ ∈ (0, 1) and µ∗ = 0.
(1) When µ∗ = 1.
From the fourth equality of (3.1), it follows that

hj(y(k)) = µk(v(k)
j )−1v(0)

j hj(y(0)), j = 1, . . . , l, (3.5)

where v(k)
j denotes the jth element of v(k).

If the (a) appears, i.e., I(y∗) 
= ∅.
It is easy to see that the binding set I(y∗) coincides with the active index set Ih(y∗),

i.e., I(y∗) = Ih(y∗), and then y∗ ∈ ∂Y .
By the second equality of (3.1), we have

(1 − µk)(−∇yg(x(k), y(k)) + ∇h(y(k))v(k)) + µk(y(k) − y(0)) = 0. (3.6)

Setting k → +∞, then (3.6) reduces to
∑

j∈Ih(y∗)
lim

k→+∞
[(1 − µk)v(k)

j ]∇hj(y∗) + y∗ = y(0),

which contradicts with that, the outer normal cone of Y meets itself at its boundary
point y∗. Hence, case a) is impossible.

If the (b) appears, i.e., I(y∗) = ∅, which implies that u(k) → +∞.
From the third equality of (3.1), it follows that

g(x(k), y(k)) = µk(u(k))−1u(0)g(x(0), y(0)). (3.7)

Setting k → +∞, we obtain

g(x∗, y∗) = 0.

This implies y∗ ∈ Xact(x
∗) 
= ∅ because of y∗ ∈ Y . From (A3) we have ∇xg(x∗, y∗) 
= 0.
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By the second equality of (3.1), we have

(1 − µk)(∇f (x(k)) + ∇xg(x(k), y(k))u(k)) + µk(x(k) − x(0)) = 0. (3.8)

In the following, we will prove that Eq. (3.8) and u(k) → +∞ will yield a contradiction
and hence case b) is impossible.

Setting k → +∞, from (3.8) and ∇xg(x∗, y∗) 
= 0 it is easy to see that the limit of
(1 − µk)u(k), denoted by ᾱ ≥ 0, exists, and we have

x(0) = x∗ + ᾱ∇xg(x∗, y∗). (3.9)

If ᾱ = 0, then from Xact(x
∗) 
= ∅ it follows that x∗ ∈ ∂X, which contradicts with

x(0) ∈ X0, else (3.9) contradicts with the condition (A5). Hence, case (b) is impossible.
(2) When µ∗ ∈ (0, 1).

If the a) appears, from (3.5) we also know that the binding set I(y∗) coincides with
the active index set Ih(y∗), i.e., I(y∗) = Ih(y∗), and then y∗ ∈ ∂Y . From (A4) it follows
that ∇hj(y∗) 
= 0 for all j ∈ Ih(y∗).

By the second equality of (3.1), we have

lim
k→+∞

(
(1 − µk)(−∇yg(x(k), y(k)) + ∇h(y(k))v(k)) + µk(y(k) − y(0))

)
= 0. (3.10)

Using x(k) → x∗, y(k) → y∗ (k → +∞), (3.12) becomes
∑

j∈Ih(y∗)
(1 − µ∗)∇hj(y∗) lim

k→+∞
(v(k)

j )=−µ∗(y∗ − y(0)) −
∑

j/∈Ih(y∗)
lim

k→+∞
[(1 − µk)v

(k)
j ]∇hj(y∗),

in which the left-hand side tends to infinity, but the right-hand side is bounded. Hence,
case a) is impossible.

If the (b) appears, that is, u(k) → +∞. By (3.7) and setting k → +∞, we also obtain
that

g(x∗, y∗) = 0,

which implies that y∗ ∈ Xact(x
∗) because of y∗ ∈ Y . From (A3) we have ∇x

g(x∗, y∗) 
= 0.
By (3.8) and setting k → +∞, we have

(1 − µ∗)∇xg(x∗, y∗) lim
k→+∞

u(k) = −µ∗(x∗ − x(0)) + (1 − µ∗)∇f (x∗). (3.11)

The term in the left-hand side of (3.13) tends to infinity, but the right-hand side is
bounded. Hence, case (b) is impossible.
(3) When µ∗ = 0.

If the (a) appears, from (3.5) we also know that I(y∗) = Ih(y∗) 
= ∅ and y∗ ∈ ∂Y .
From (A4) it follows that ∇hj(y∗) 
= 0 for all j ∈ Ih(y∗).

By the second equality of (3.1), we have

lim
k→+∞

(
(1 − µk)(−∇yg(x(k), y(k)) + ∇h(y(k))v(k)) + µk(y(k) − y(0))

)
= 0. (3.12)

Using x(k) → x∗, y(k) → y∗ (k → +∞), (3.12) becomes
∑

j∈Ih(y∗)
∇hj(y∗) lim

k→+∞
v(k)

j = −
∑

j/∈Ih(y∗)
∇hj(y∗) lim

k→+∞
v(k)

j
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in which the left-hand side tends to infinity, but the right-hand side is bounded. Hence,
case a) is impossible.

If the (b) appears, we have u(k) → +∞. From the discussion in Cases (1) and (2) it
is not hard to see that ∇xg(x∗, y∗) 
= 0. By (3.8) and setting k → +∞, we have

∇xg(x∗, y∗) lim
k→+∞

u(k) = ∇f (x∗). (3.13)

The term in the left-hand side of (3.13) tends to infinity, but the right-hand side is
bounded. Hence, Case (b) is impossible.

Finally, from (1), (2) and (3) we know that the �w0 is bounded. ��
The following theorem which implies the global convergence of interior path-fol-

lowing method for the SIP, can be proven.

Theorem 3.1 Suppose that Assumptions (A1)–(A5) hold, let Hw(0) (w, µ) be defined
in (3.1), then the system (2.6), with (2.7), have at least one solution. For almost all
w(0) ∈ �0 × �++ × �l++, the zero-point set H−1

w(0) (0) of (3.1) contains a smooth curve

�w(0) ⊂ �0 ×�++×�l++×(0, 1], which starts from (w(0), 1) and tends to the hyperplane
at µ = 0. As µ → 0+, the limit set � ×{0} ⊂ �×�+ ×�l+ × [0, 1] of �w(0) is nonempty,
and every point in � is the solution of (2.6) together with (2.7).

Proof By Lemma 3.1, for almost all w(0) ∈ �0 × �++ × �l++, 0 is a regular value
of Hw(0) , and �w(0) consists of some smooth curves, among them, a smooth curve is
starting from (w(0), 1).

By the classification theorem of one-dimensional smooth manifold, �w(0) is diffeo-
morphic to a unit circle or a unit interval (0, 1]. Note that the matrix is of the form

∇Hw(0) (w(0), 1) = ∂Hw(0) (w, µ)

∂w

∣∣∣∣
(w=w(0), µ=1)

=





I 0 0 0
0 I 0 0

u(0)∇xg(x(0), y(0))T u(0)∇yg(x(0), y(0))T g(x(0), y(0)) 0
0 V(0)∇h(y(0))T 0 h(y(0))





and that g(x(0), y(0)) < 0 and h(y(0)) < 0, we see easily that ∂Hw(0) (w(0), 1)/∂w is non-
singular, hence �w(0) is diffeomorphic to (0, 1]. Let (w∗, µ∗) be a limit point of �w(0) ,
then only the following three cases are possible.

(1) (w∗, µ∗) ∈
(
� × �+ × �l++

)
× {1};

(2) (w∗, µ∗) ∈ ∂
(
� × �+ × �l++

)
× (0, 1];

(3) (w∗, µ∗) ∈
(

cl(�) × �+ × �l+
)

× {0}.

Note that the equation H(w, w(0), 1) = 0 has only one solution (w(0), 1) in �0 ×�++ ×
�l++×{1}, and hence the case (1) is impossible. In case (2), there must exist a sequence
of (w(k), µk) ∈ �w(0) such that, hj(y(k)) → 0 for some 1 ≤ j ≤ l (or g(x(k), y(k)) → 0).

Then, from the fourth (third) equation of (3.1), it follows that ||v(k)
j || → ∞ (or

uk → +∞). This contradicts with lemma 3.2. Thus, the case (2) is impossible. As
a conclusion, the case (3) is the only possible case, i.e., �w(0) must approach to the
hyperplane at µ = 0. In this case, from the boundedness of (w(k), µk) on the curve
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�w(0) and µk ∈ (0, 1], we know that {w(k)} have at least one accumulation point as
µk → 0+. Let x∗, y∗, u∗ and v∗ the accumulation points of {x(k)}, {y(k)}, {u(k)} and
{v(k)}, respectively. By (3.1), we have

(1 − µk)(∇f (x(k)) + ∇xg(x(k), y(k))u(k)) + µk(x(k) − x(0)) = 0,

(1 − µk)(−∇yg(x(k), y(k)) + ∇h(y(k))v(k)) + µk(y(k) − y(0)) = 0,

u(k)g(x(k), y(k)) − µku(0)g(x(0), y(0)) = 0,

V(k)h(y(k)) − µkV(0)h(y(0)) = 0.

(3.14)

In the following, we will prove that x∗ and y∗, with the multipliers u∗ and v∗, are
indeed the solution of (2.6) with (2.7). By the continuity of H, and passing to the limit
in the first and second equation of (3.14), we obtain

∇f (x∗) + ∇xg(x∗, y∗)u∗ = 0,
−∇yg(x∗, y∗) + ∇h(y∗)v∗ = 0.

By the third equation of (3.14), i.e.,

u(k)g(x(k), y(k)) = µku(0)g(x(0), y(0)) (3.15)

and u(0) > 0 and g(x(0), y(0)) < 0, we have u(k) 
= 0, g(x(k), y(k)) 
= 0 for all µk 
= 0.
So, we have u(k) > 0 and g(x(k), y(k)) < 0 for all µk 
= 0. By the continuity of g(x, y),
passing to the limit in (3.15), we obtain

u∗g(x∗, y∗) = 0,
u∗ ≥ 0, g(x∗, y∗) ≤ 0.

By the fourth equation of (3.14), i.e.,

v(k)
i hi(y(k)) = µkv(0)

i hi(y(0)), i = 1, . . . , l (3.16)

and v(0)
i > 0 and hi(y(0)) < 0, we have v(k)

i 
= 0 and hi(y(k)) 
= 0 for all µk 
= 0. Hence,
we obtain that v(k)

i > 0 and hi(y(k)) < 0 for all µk 
= 0. By the continuity of hi(y),
passing to the limit in (3.16), we obtain

v∗
i hi(y∗) = 0, i = 1, . . . , l,

v∗
i ≥ 0, hi(y∗) ≤ 0.

As a conclusion, x∗ and y∗, with the multipliers u∗ and v∗, are the solution of (2.6)
with (2.7). ��

From theorem 3.1, for almost all w(0) ∈ �0 ×�++ ×�l++, the homotopy equations
in (3.1) implicitly define a smooth curve �w(0) , called the homotopy path. Let s denote
the arclength of �w(0) , we can parameterize �w(0) with respect to s, that is, there exist
continuously differentiable functions w(s), µ(s) such that

Hw(0) (w(s), µ(s)) = 0,

||(ẇ(s), µ̇(s))|| = 1, (3.17)

w(0) = w(0), µ(0) = 1,

µ̇(0) < 0.

By differentiating the first equation of (3.17) we obtain the following result.
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Theorem 3.2 The homotopy path �w(0) is determined by the following initial value
problem to the system of ordinary differential equations

∇Hw(0) (w, µ)

(
ẇ(s)
µ̇(s)

)
= 0,

||(ẇ(s), µ̇(s))|| = 1,
w(0) = w(0), µ(0) = 1,

µ̇(0) < 0.

(3.18)

And the w-component of (w(s∗), µ(s∗)), for µ(s∗) = 0, is the solution of (2.6) with (2.7).

Based on theorems 3.1, 3.2 and by using (3.17) and (3.18), we describe how to
numerically trace the homotopy path �w(0) by some predictor-corrector (PC) proce-
dure [1]. The idea in PC methods is to numerically trace the curve �w(0) by generating
a sequence of points {z(k)} ⊂ �0 × �++ × �l++ × (0, 1] with z(0) = (w(0), 1), that lie
approximately on the curve in order of increasing arc length, i.e. z(k) ≈ (w(sk), µ(sk)),
where {sk} is some increasing sequence of arc length. To obtain a new point z(k+1) along
the curve �w(0) , we first make a predictor step. The prediction phase requires for each
iterate z(k) the corresponding unit tangent vector to the curve (z′)(k) ≈ (ẇ(sk), µ̇(sk)).
Recall that for almost all w(0) ∈ �0 × �++ × �l++, the Jacobian matrix ∇Hw(0) (w, µ)

w.r.t. w and µ has full row rank. Thus, this is accomplished by finding an element η in
the kernel of ∇Hw(0) (w, µ) that maintains the correct orientation, viz.,

(∇wHw(0) (w, µ), ∇µHw(0) (w, µ)
) (

ẇ(s)
µ̇(s)

)
= 0,

where

η =
(

ẇ(s)
µ̇(s)

)

and setting (z′)(k) = ± η
||η|| . Since the negative direction will lead us back to the ini-

tial point, so we must go along the positive direction. The criterion in step 1(b) of
Algorithm 3.1 that determines the positive direction is based on a basic theory of
homotopy method, namely, the positive direction η at any point (w, µ) on �w(0) keeps
the sign of the determinant

∣∣∣∣
∇Hw(0) (w, µ)

ηT

∣∣∣∣

invariant. On the first iterate, the sign is determined by the following lemma.

Lemma 3.3 If �w(0) is smooth, then the positive direction η(0) at the initial point
(w(0), µ0) satisfies

sign

∣∣∣∣∣
∇Hw(0) (w(0), 1)

η(0)T

∣∣∣∣∣ = (−1)l+2. (3.19)

Proof From the definition of ∇Hw(0) (w, µ), it follows that

∇Hw(0) (w, µ) = ∂Hw(0) (w, µ)

∂(w, µ)

=





Q1 (1 − µ)u∇2
yxg(x, y) (1 − µ)∇xg(x, y) 0 a

−(1 − µ)∇2
xyg(x, y) Q2 0 (1 − µ)∇h(y) b

u∇xg(x, y)T u∇yg(x, y)T g(x, y) 0 c
0 V∇h(y)T 0 h(y) d



 ,



J Glob Optim (2007) 37:631–646 643

where

Q1 = (1 − µ)
(∇2f (x) + u∇2

x g(x, y)
) + µI ∈ �n×n,

Q2 = (1 − µ)
(
−∇2

y g(x, y) + ∇2h(y)v
)

+ µI ∈ �m×m,

a = x − x(0) − ∇f (x) − ∇xg(x, y)u,
b = y − y(0) + ∇yg(x, y) − ∇h(y)v,
c = −u(0)g(x(0), y(0)),
d = −V(0)h(y(0)).

Using the initial point w(0) ∈ �0 and µ0 = 1, we obtain

∇Hw(0) (w(0), 1)

=





I 0 0 0 a(0)

0 I 0 0 b(0)

u(0)∇xg(x(0), y(0))T u(0)∇yg(x(0), y(0))T g(x(0), y(0)) 0 c(0)

0 V(0)∇h(y(0))T 0 h(y(0)) d(0)



 ,

= (M1, M2) ,

where M1 ∈ �(n+m+1+l)×(n+m+1+l), M2 ∈ �(n+m+1+l)×1. The tangent vector η(0) =
(η

(0)

1 , η(0)
2 ) of �w(0) at (w(0), 1) should satisfy

(M1, M2)

(
η

(0)

1
η

(0)
2

)
= 0,

where η
(0)

1 ∈ �n+m+1+l and η
(0)
2 ∈ �. By direct computation, we have η

(0)

1 =
−M−1

1 M2η
(0)
2 . The determinant in (3.19) is of the form

∣∣∣∣∣
∇Hw(0) (w(0), 1)

η(0)T

∣∣∣∣∣ =
∣∣∣∣
M1 M2

−MT
2 M−T

1 1

∣∣∣∣ η
(0)
2

=
∣∣∣∣
M1 M2

0 1 + MT
2 M−T

1 M−1
1 M2

∣∣∣∣ η
(0)
2

= |M1|
(

1 + MT
2 M−T

1 M−1
1 M2

)
η

(0)
2 . (3.20)

By the definition of M1, we have

|M1| =

∣∣∣∣∣∣∣∣

I 0 0 0
0 I 0 0

u(0)∇xg(x(0), y(0))T u(0)∇yg(x(0), y(0))T g(x(0), y(0)) 0
0 V(0)∇h(y)(0))T 0 h(y(0))

∣∣∣∣∣∣∣∣

=
∣∣∣g(x(0), y(0))

∣∣∣

∣∣∣∣∣∣

I 0 0
0 I 0
0 V(0)∇h(y(0))T h(y(0))

∣∣∣∣∣∣

=
∣∣∣g(x(0), y(0))

∣∣∣
∣∣∣∣

I 0
V(0)∇h(y(0))T h(y(0))

∣∣∣∣

=
∣∣∣g(x(0), y(0))

∣∣∣
∣∣∣h(y(0))

∣∣∣ . (3.21)
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By (3.21), (3.20) can be rewritten as
∣∣∣∣∣
∇Hx(0) (x(0), 1)

η(0)T

∣∣∣∣∣ = |M1|
(

1 + MT
2 M−T

1 M−1
1 M2

)
η

(0)
2

= ∣∣g(x(0), y(0))
∣∣ ∣∣h(y(0))

∣∣

·
(

1 +
(

M−1
1 M2

)T
M−1

1 M2

)
η

(0)
2 .

Note that g(x(0), y(0)) < 0, h(x(0)) < 0, 1 +
(

M−1
1 M2

)T
M−1

1 M2 > 0 and η
(0)
2 should

be negative since initially we plan to move along the path �x(0) by decreasing µ, and
hence the sign of

∣∣∣∣∣
∇Hw(0) (w(0), 1)

η(0)T

∣∣∣∣∣

is (−1)l+2. This completes the proof of lemma. ��
Associating with lemma 3.3, a new predictor point ẑ(k+1) can be generated at point
z(k) along the direction η(k), i.e. ẑ(k+1) = z(k) + hη(k) for some small steplength h > 0.
Next, we may make a corrector step. Setting Mk = ∇Hw(0) (w(k), µk), the matrix

M+
k = MT

k (MkMT
k )−1 ∈ �(n+m+1+l+1)×(n+m+1+l)

is the Moore-Penrose inverse of Mk. The corrector phase then tries to identify a
point (w(s), µ(s)) on the path near to ẑ(k+1); that is used to define the next iterate
z(k+1) = (w(sk+1), µ(sk+1)). The corrector step is usually carried out by a version of
Newton’s method that uses the Moore-Penrose inverse of Mk, starting with ẑ(k+1) and
proceeding until ||Hw(0) (w, µ)|| is approximately zero. If a predictor step produces a
point that cannot be sufficiently corrected or fewer iterations of the corrector step, a
revised, more conservative steplength adaptation is made by some steplenth strate-
gies, and then the corrector step is attempted again. The following pseudocode shows
the basic steps of a generic predictor–corrector method.

Algorithm 3.1 (Generic PC method for approximate solution of (3.3))
Step 0 Give µ0 = 1, an initial point y(0) = (w(0), µ0), step length h0 > 0 and two small
positive numbers ε1, µε , k := 0.
Step 1 Compute a predictor point (w(k+1,0), µk+1,0):

(a) Compute a unit tangent vector ξ (k) ∈ �n+m+1+l+1;
(b) Determine the direction η(k) of predictor step:

If the sign of the determinant
∣∣∣∣∣
∇Hw(0) (w(k), µk)

ξ (k)T

∣∣∣∣∣

is (−1)l+2, then η(k) = ξ (k), else η(k) = −ξ (k).
(c) Set (w(k,0), µk,0) = (w(k), µk) + hkη(k).

Step 2 Compute a corrector point (w(k+1), µk+1):

(w(k+1,j), µk+1,j) = (w(k,j−1), µk,j−1) − M+
k,j−1Hw(0) (w(k,j−1), µk,j−1), j = 1, 2, . . .
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until ||Hw(0) (w(k+1,j), µk+1,j)|| ≤ ε1, and set

(w(k+1), µk+1) = (w(k+1,j), µk+1,j).

Step 3 If µk+1 ≤ µε , then stop, else choose a new steplength hk+1 > 0. k := k + 1,
and go to Step 1.

4 Preliminary numerical results

To illustrate the computational implementation of the proposed algorithm, several test
problems in this section are listed in the following and solved by previous homotopy
algorithm by using the software of MATLAB6.5 on a PC with Intel4 CPU PI 2.0 MHZ
and DOS6.22. The numerical results given here are obtained by using the above
Euler–Newton procedure (3.1). In all computation, the termination criterion in cor-
rector step is ε1 = 1.0e − 010 and the setting for the parameter is hk ≡ h0 = 0.01. For
convenience, some multipliers appearing in each example are the same as

u(0) = 1.0, v(0) = (1.0, 1.0)T.

Moreover, numerical results are computed by short-type precision of matlab 6.5’ lan-
guage, and are reported in the tables. The Table 1 includes the initial point, approxi-
mate solution and value-evaluation of the objective function.

Example 4.1 [15] f (x) = 2.25 exp(x1)+exp(x2), g(x, y) = y−exp(x1 +x2), Y = [0, 1].
x∗ = (−4.05e − 01, 4.05e − 01). y∗ = 1.0000.

Example 4.2 [10] f (x) = 1.21 exp(x1)+exp(x2), g(x, y) = y−exp(x1 +x2), Y = [0, 1].
x∗ = (−9.53e − 02, 9.53e − 02). y∗ = 1.0000.

Example 4.3 [9] f (x) = 2x1 + x2, g(x, y) = −y2 + y − yx1 + (y − 1)x2, Y = [0, 1].
x∗ = (1/9, 4/9). y∗ = 0.6666.

Table 1 Results for PC algorithm

Example l x(0) y(0) x̄ ȳ f (x̄) µε

4.1 2 (1.0, 1.0) 0.50 (−0.4057, 0.4053) 1.0000 8.1525e − 011 1.0e − 03
(1.0, 1.0) 0.90 (−0.4057, 0.4053) 1.0000 9.6164e − 011
(2.0, 3.0) 0.50 (−0.4036, 0.4074) 1.0000 9.9261e − 011
(2.0, 3.0) 0.70 (−0.4034, 0.4075) 1.0000 4.6621e − 011

4.2 2 (1.0, 1.0) 0.50 (−0.0941, 0.0965) 0.9998 8.9495e − 011 1.0e − 03
(1.0, 1.0) 0.60 (−0.0966, 0.0941) 1.0002 5.9523e − 011
(2.0, 1.0) 0.50 (−0.0964, 0.0944) 1.0001 9.8645e − 011
(3.0, 1.0) 0.50 (−0.0974, 0.0934) 1.0000 9.9828e − 011

4.3 2 (1.0, 0.0) 0.50 (0.1111, 0.4443) 0.6667 2.7137e − 011 1.0e − 03
(1.0, 0.0) 0.75 (0.1107, 0.4448) 0.6668 6.2663e − 011
(0.0, 1.0) 0.75 (0.1110, 0.4446) 0.6664 2.1618e − 011
(2.0, 1.0) 0.75 (0.1113, 0.4445) 0.6666 4.0670e − 011
(4.0, 9.0) 0.50 (0.1110, 0.4439) 0.6665 3.3400e − 011

Acknowledgements I like to express my thanks to anonymous reviewers, whose precise and sub-
stantial remarks led to an improved version of the paper.
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